A conserved epitope on a subset of SR proteins defines a larger family of Pre-mRNA splicing factors

نویسندگان

  • K M Neugebauer
  • J A Stolk
  • M B Roth
چکیده

The removal of introns from eukaryotic pre-mRNA occurs in a large ribonucleoprotein complex called the spliceosome. We have generated a monoclonal antibody (mAb 16H3) against four of the family of six SR proteins, known regulators of splice site selection and spliceosome assembly. In addition to the reactive SR proteins, SRp20, SRp40, SRp55, and SRp75, mAb 16H3 also binds approximately 20 distinct nuclear proteins in human, frog, and Drosophila extracts, whereas yeast do not detectably express the epitope. The antigens are shown to be nuclear, nonnucleolar, and concentrated at active sites of RNA polymerase II transcription which suggests their involvement in pre-mRNA processing. Indeed, most of the reactive proteins observed in nuclear extract are detected in spliceosomes (E and/or B complex) assembled in vitro, including the U1 70K component of the U1 small nuclear ribonucleoprotein particle and both subunits of U2AF. Interestingly, the 16H3 epitope was mapped to a 40-amino acid polypeptide composed almost exclusively of arginine alternating with glutamate and aspartate. All of the identified antigens, including the human homolog of yeast Prp22 (HRH1), contain a similar structural element characterized by arginine alternating with serine, glutamate, and/or aspartate. These results indicate that many more spliceosomal components contain such arginine-rich domains. Because it is conserved among metazoans, we propose that the "alternating arginine" domain recognized by mAb 16H3 may represent a common functional element of pre-mRNA splicing factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors.

The fact that animal introns are not spliced out in plants suggests that recognition of pre-mRNA splice sites differs between the two kingdoms. In plants, little is known about proteins required for splicing, as no plant in vitro splicing system is available. Several essential splicing factors from animals, such as SF2/ASF and SC-35, belong to a family of highly conserved proteins consisting of...

متن کامل

Identification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors.

The SR protein family is involved in constitutive and regulated pre-mRNA splicing and has been found to be evolutionarily conserved in metazoan organisms. In contrast, the genome of the unicellular yeast Saccharomyces cerevisiae does not contain genes encoding typical SR proteins. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature ...

متن کامل

SR proteins: a conserved family of pre-mRNA splicing factors.

We demonstrate that four different proteins from calf thymus are able to restore splicing in the same splicing-deficient extract using several different pre-mRNA substrates. These proteins are members of a conserved family of proteins recognized by a monoclonal antibody that binds to active sites of RNA polymerase II transcription. We purified this family of nuclear phosphoproteins to apparent ...

متن کامل

THE ROLE OF SR AND SR‐RELATED PROTEINS IN pre‐mRNA SPLICING

Pre‐mRNA splicing requires the activities of small nuclear ribonucleoproteins and other essential splicing factors. Among these are members of the SR protein family and SR‐related proteins, which are integrally involved in regulating exon recognition, spliceosomal assembly, and spliceosomal re‐arrangements to promote intron excision. This chapter will focus on the discovery of SR proteins and S...

متن کامل

The SR protein family of splicing factors: master regulators of gene expression.

The SR protein family comprises a number of phylogenetically conserved and structurally related proteins with a characteristic domain rich in arginine and serine residues, known as the RS domain. They play significant roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. In addition they participate in post-splicing activities, such as mRNA nuclear e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 1995